Quadrilaterals Class 9 MCQ with Solution
1. The figure formed by joining the consecutive mid-points of any rhombus is always-
(A) a square
(B) a rhombus
(C) a parallelogra
(D) None of the above
Ans.       (C)
Sol.        The figure formed by joining the consecutive mid-points of any rhombus is always a parallelogram (by using mid point theorem.)
2.  The quadrilateral formed by joining the mid-points of the sides of a quadrilateral PQRS, taken in order is a rhombus if :
(A) PQRS is rhombus
(B) PQRS is a parallelogram
(C) Diagonals of PQRS are perpendicular
(D) Diagonals of PQRS are equal
Ans.       (D)
Sol.        PQ = SR = 1/2 AC
SPÂ = QR = 1/2 BD
For Rhombus      PQ = SP
so         1/2 AC = 1/2 BD
ACÂ = BD
so diagonals should be equal.
3.  Choose the correct statement :
(A) The diagonals of a parallelogram are equal
(B) The diagonals of a rectangle are perpendicular to each other.
(C) If the diagonals of a quadrilateral intersect at right angles, it is not necessarily a rhombus
(D) Every quadrilateral is either a trapezium or a parallelogram or a kite
Ans.      (C)
Sol.        If the diagonals of a quadrilateral intersect at right angles.
It is not necessarily a rhombus.
4.  ABCD is a rhombus, EABF is a straight line such that EA = AB = BF and ED and FC when produced meet at G, then∠DGC is :
(A) An acute angle
(B) An obtuse angle
(C) A right angle
(D) A reflex angle
Ans.       (C)
Sol.        Let \angle DAB = θ
So \angle CBA = 180^\circ - \theta
here      DA = EA
so      Â
\angle EDA = \angle AEDso      \angle AED = \theta /2
similarly  \angle BFC = \frac{{180 - \theta }}{2}
In       \Delta EGF \angle DGC = 180 - \left[ {\frac{\theta }{2} + \frac{{180 - \theta }}{2}} \right]
= 90°
5.  ABCD is a ||gm. AB is produced to E so that BE = AB. If DE and BC intersect at O and OB = 5 cm, then AD =
(A) 5 cm
(B) 10 cm
(C) 8 cm
(D) Can’t be determined
Ans.       (B)
Sol.        AB = BE
&Â Â Â Â Â Â BCÂ || AD
so O will be mid point of BC
so     BC = CD
&Â Â Â Â Â Â ADÂ = BC = 10
6.  In figure, ABCD is a ||gm then ∠A = :
(A) 60°
(B) 75°
(C) 90°
(D) None of these
Ans.       (C)
Sol.        \angle A = \angle C = 5a
so                      2a + 3a + 5a = 180°
                      10a = 180°Â
                       a = 18°
so   \angle A  = 5a = 90°
7.   Which one is not true in the following :
(A) A square, rectangle and rhombus are parallelograms
(B) A parallelogram is a trapezium, and a trapezium is also a parallelogram
(C) A rectangle or a rhombus is not necessarily a square
(D) A kite is not a paralleogram
Ans.       (B)
Sol.        A parallelogram is a trapezium but trapezium is also a parallelogram is not true.
8.  One angle of a cyclic trapezium is double the other. The measure of the larger angle is :
(A) 60º
(B) 75º
(C) 80º
(D) 120º
Ans.       (D)
Sol.        \alpha + 2\alpha = 180°
               \alpha = 60°
⇒      2\alpha = 120°
9.  The adjacent sides of a parallelogram are in the ratio of a : b. The ratio of the corresponding altitude is
(A) a : b
(B) b : a
(C) c2Â : b2
(D) b2Â : a2
Ans.       (B)
Sol.        Area of parallelogram will be constant
                           a.h1 = b.h2
\frac{{{h_1}}}{{{h_2}}} = \frac{b}{a}10.  A trapezium has its non-parallel sides congruent, then its opposite angles are :
(A) Congruent
(B) Supplementary
(C) Complementary
(D) None of these
Ans.       (B)
Sol.        It will be a cyclic trapezium
So opposite angles will be supplementary.
11.  The sum of the interior angles of a 12 sided polygon is :
(A) 1860o                                                       Â
(B) 1980oÂ
(C) 1200o                                                      Â
(D) 1800oÂ
Ans.    (D)
Sol.     (n –2) × 180º = 10 × 180º = 1800°
12. The sum of the interior angles of a polygon is seven times the sum of its exterior angles. Then number of sides in polygon is :
(A) 12Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â
(B) 15
(C) 16Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â
(D) None of these
Ans.    (C)
Sol.      (n – 2) × 180º = 7 × 360º
\Rightarrow      n  = 1613.  The interior angles of a pentagon are ao, (a+10)o, (a + 20)o, (a+30)o and (a+40)o. Then which of the following is one of the angles of the pentagon.
(A) 68o                                    Â
(B) 96oÂ
(C) 84o                                                          Â
(D) 108oÂ
Ans.    (D)
Sol.     a + a + 10º + a + 20º + a + 30º + a + 40º = (5 – 2) × 180º
\Rightarrow      5a  = 440º \Rightarrow       a  = 88º           angles are 88º, 98º, 108º, 118º and 128º.
14.  In the given figure, ABCD is an isosceles trapezium in which ∠CDA = 2x° and ∠BAD = 3x° then x =:
(A) 18°                                    Â
(B) 27°
(C) 36°                                  Â
(D) 45°
Ans.    (C)
Sol.     2xº + 3xº = 180º
\Rightarrow         x = = 36º15.  The sum of interior angles of a polygon is three times the sum of its exterior angles. Then number of sides in the polygon is :
(A) 6Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â
(B) 7
(C) 8Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â
(D) 9
Ans     (C)
Sol.     (n – 2) × 180° = 3 × 360°
⇒         n = 8
16.  The sides BA and DC of the quadrilateral ABCD are produced as shown in the figure then :
(A) a + x = b + y                                            Â
(B)Â a + y = b + x
(C) a + b = x + y                                            Â
(D) None of these
Ans.    (C)
Sol.     x + 180º – b + y + 180º – a = 360º
\Rightarrow     a + b  = x + y17.  Four angles of an 8-sided polygon are each of 154°. If the remaining four angles are equal, the measure of each remaining angle is :
(A) 116°                                                         Â
(B) 120°
(C) 124°                                                         Â
(D) 128°
Ans.    (A)
Sol.     (4×154°) (4 × x) = (8 – 2) × 180°
                                4x = 1080º – 616º = 464º
                                  x = 116°
18.  ABCD is a || gm. If two diagonals are equal, then \angle A{\bf{B}}C =
(A) 60o                                    Â
(B) 45oÂ
(C) 90o                                                          Â
(D) Can’t be determined.
Ans.    (C)
Sol.     [ABCD will be a rectangle, so ∠ABC = 90°]
19.  The bisectors of the angles of a || gm enclose a :
(A) Parallelogram                                           Â
(B) Rhombus                        Â
(C) Rectangle                                                 Â
(D) Square
Ans.    (C)
Sol.    Â
            ABCD be a parallelogram and AP, BP, CQ, DQ are angle bisectors
                    ∠P = ∠Q = ∠R = ∠S = 90°
So,              PQRS is a rectangle.
20.  In a quadrilateral ABCD, if AO and BO are the bisectors \angle A of \angle B and respectively, \angle C = {70^o}and \angle D = {130^o}, then \angle AOB is :
(A) 40o                                    Â
(B) 80oÂ
(C) 50o                                  Â
(D) 100oÂ
Ans.    (D)
Sol.   Â
               ∠A + ∠B = 360° – (70° + 130°)
                                               = 160°
                                    2(x+y) = 160°
⇒                    x+y = 80°
                 ∠AOB = 180° – (x+y) = 100°
21.  If one angle of a parallelogram is 24o less than twice the smallest angle, then the largest angle of the parallelogram is :
(A) 176°                                             Â
(B) 68°
(C) 112°                                                   Â
(D) 102°
Ans.    (C)
Sol.     x + x+(2x–24°) +(2x–24°) = 360°
                          2x + 4x – 48°  = 360°
                                          6x  = 408°
                                            x = 68°
                         Largest Angle = 2 × 68° – 24
                                                = 136° – 24° = 112°
22.  Which one of the following statements is correct for a square :
(A) Diagonals are equal and bisect each other at right angles.
(B) Diagonals are unequal & do not bisect each other.
(C) Diagonals are equal but do not bisect each other.
(D) Diagonals are unequal and bisect each other at right angle.
Ans.    (A)
Sol.     For a square, diagonals are equal and bisect each other at right angles.
23.   The adjacent interior angles of a parallelogram are (2x – 15)o and (7x – 75)o then x =
(A) 25o                                    Â
(B) 30oÂ
(C) 35o                                                          Â
(D) 40oÂ
Ans.    (B)
Sol.          (2x –15)° +(7x –75)° = 180°
                                          9x = 180° + 90° = 270°
                                            x = 30°
24.  In which of the following is the lengths of diagonals equal ?
(A) Rhombus                                                 Â
(B) Parallelogram
(C) Trapezium                                                 Â
(D) Rectangle
Ans.    (D)
Sol.     Rectangle
25.  The length of a side of a rhombus is 5 m and one of its diagonals is of length 8 m. The length of the other diagonal is :
(A) 5 m                                   Â
(B) 7 m
(C) 6 m                                  Â
(D) 8 mÂ
Ans.    (C)
Sol.   Â
           ABCD is a rhombus
       AO = \sqrt {{5^2}\, - \,{4^2}} = 3 m
      AC = 2(AO) = 6 m
26.  If the lengths of two diagonals of a rhombus are 12 cm and 16 cm, then the length of each side of the rhombus is:
(A) 10 cm                                                       Â
(B) 14 cm                              Â
(C) cannot be determined
(D) None of these
Ans.    (A)
Sol.      Each side of rhombus = \sqrt {{6^2} + {8^2}} = 10\,cm
27.  ABCD is a rectangle with \angle ABD = {40^o}. Then DBC is :
(A) 40o                                    Â
(B) 90oÂ
(C) 50o                                               Â
(D) None of these
Ans.    (C)
Sol.   ∠DBC = 90° – 40° = 50°
28.  If ABCD is a quadrilateral such that its diagonals AC and BD intersect at O into four triangles of equal area. Then ABCD must be a :
(A) Parallelogram                                           Â
(B) Rhombus
(C) Square                                                   Â
(D) Rectangle
Ans.    (A)
Sol.     Parallelogram
29.  In figure ABCD and AEFG are both || gm.
If ∠C = 60° then ∠F = :
(A) 60°                                    Â
(B) 120°
(C) 150°                                                         Â
(D) None of these
Ans.    (A)
Sol.    ∠C = ∠F = 60°
30.  ABCD is a rhombus with \angle ABC = 58o. Then \angle ACD is :
(A) 60o                                               Â
(B) 62oÂ
(C) 58o                                              Â
(D) 61o Â
Ans.    (D)
Sol.   ∠ACD = \frac{{180^\circ \, - \,58^\circ }}{2}\, = \,61^\circ
31. In a parallelogram ABCD, AB = 10cm. The altitudes corresponding to the sides AB and AD are 7 cm and 8 cm respectively. Length of the AD is :
(A) 5 cm                                                        Â
(B) 8.75 cm
(C) 9.25 cm                                                    Â
(D) 11.75 cmÂ
Ans.    (B)
Sol.     AD × 8 = 10 × 7 \Rightarrow AD = \frac{{10 \times 7}}{8} = 8.75 cm
32.  If O is a point within a quadrilateral then,
(A) OA < OBÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â
(B) 2.OB = AO.OD
(C) OA2Â = OB2Â + OC2Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â
(D) OA + OB + OC + OD > AC + BD
Ans.    (D)
Sol.     In ΔAOC and ΔBOD,     OA + OC > AC and OB + OD > BD                            Â
           Hence,                         OA + OB + OC + OD > AC + BD
33.  In the figure, ABCD is a parallelogram and the bisector of ∠A bisects BC at x. Then,
(A) AD = BD Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â
(B)Â AC = \frac{1}{2}AX
(C) AD = 2.ABÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â
(D) None of theseÂ
Ans.    (C)
Sol.     ∠DAX = ∠XAB = ∠BXA
           So       ∠1 = ∠2 and AB = BX = XC
           \Rightarrow       2AB = AD
34.  If each interior angle of a regular polygon is 178o, then the number of sides of that polygon is :
(A) 180 sides                                                 Â
(B) 360 sides
(C) 10 sides                                                   Â
(D) 178 sides                        Â
Ans.    (A)
Sol.     exterior angle = (180º – 178º)
                                               = 2º
                     number of sides = = 180
35.  Which of the following is not a polygon :
(A) Triangle                                                    Â
(B) Square
(C) Circle                                                       Â
(D) Heptagon
Ans.    (C)
Sol.     Circle
36.  In figure ABCD is a rhombus. If ∠CAB = 2a and ∠BCA = 3a and ∠DAC = a + 40, find the value of ∠ABC :
(A) 70°                                    Â
(B) 80°
(C) 90°                                    Â
(D) 60°
Ans.    (B)
Sol.     a + 40° = 3a
⇒      a = 20°
   ∠ABC = 180° – (2a + 3a) = 180° – 5a = 80°
37.  The perimeter of a rhombus is 20 cm. One of its diagonal is 8 cm. Then its area:
(A) 24 sq. cm                                                 Â
(B) 48 sq. cm
(C) 64 sq.cm                                                  Â
(D) 92 sq. cm
Ans.    (A)
Sol.             Side of rhombus = \frac{{20}}{4} = 5 cm
                        Other diagonal = 2 \times \,\sqrt {{5^2}\, - \,{4^2}} \,\, = \,\,6\,cm
                                       Area = = 24 sq.cm
38.  In figure, ABCD is a rhombus with ∠BAD = 50o , then (x,y) =
Â
(A) (25o,65o)Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â
(B) (25o,50o)
(C) (65o,50o)Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â
(D) None of these
Ans.    (D)
Sol.     yº = ∠BAC =  = 25º
              ∠ABC = 2xº
                    = 180º – 50º
                    = 130º
\Rightarrow      x = 65ºHence,           (x, y) = (65º, 25º)
39.  The angles of a quadrilateral are x°, x – 10°, x + 30° and 2x°. Find the greatest angle:
(A) 136°                                                         Â
(B) 180°                                 Â
(C) 68°                                   Â
(D) None of these
Ans.    (A)
Sol.     x + x – 10º + x + 30º + 2xº = 360º
                                         5xº = 360º + 10º – 30º
                                               = 340º
\Rightarrow       xº  =                         greatest angle = 2xº = 68º × 2
                                               = 136º
40.  Two adjacent angles of a parallelogram are in the ratio 4 : 5. The angles are:
(A) 180°, 180°                                                 Â
(B) 36°, 144°                          Â
(C) 80°, 100°                                                  Â
(D) None of these
Ans.    (C)
Sol.       4x + 5x = 180º
\Rightarrow     x  = 20º                                angle are 4x, 5x
\Rightarrow           80º, 100º41.  If one of the interior angles of a regular polygon is found to be equal to \frac{9}{8} times of one of the interior angles of a regular hexagon, then the number of sides of the polygon is
(A) 4Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â
(B) 5
(C) 7Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â
(D) 8
Ans.    (D)
Sol.     \frac{{(n\, - \,2) \times \,180^\circ }}{n} = \frac{9}{8}\, \times \,\frac{{(6\, - 2) \times \,180^\circ }}{6}
⇒         n = 8
42.  The diagonals of a rectangle ABCD meet at O. If BOC = 44°, then OAD equals :
(A) 44°                                      Â
(B) 136°
(C) 88°                                    Â
(D) 68°
Ans.    (D)
Sol.   Â
                   ∠OAD = \left( {\frac{{180^\circ \, - \,44^\circ }}{2}} \right)
                                                 = 68°
43.  In the given figure, ABCD is a || gm and angle bisectors of ∠A and ∠B meet at P. Then ∠APB equals :
(A) 90°                                      Â
(B) 45°
(C) 60°                                      Â
(D) None of these
Ans.    (A)
Sol.                ∠A + ∠B = 180º
                   ∠APB = 180º – \left( {\frac{{\angle A}}{2} + \frac{{\angle B}}{2}} \right)
                                                 = 180º –
                                                 = 90º
44.  ABCD is a parallelogram. If AB = 2AD and P mid point of AB, then CPD is equal to :
(A) 90°                                      Â
(B) 60°
(C) 45°                                      Â
(D) 135°
Ans.    (A)
Sol.                                        Â
                     ∠A = 180 –2y
                      ∠B = 180 –2x
                 ∠A + ∠B = 180°
                 180° – 2y + 180 – 2x = 180°
                                        x + y = 90°
                          x + y + ∠CPD = 180°
                   ∠CPD = 90°
45.  If PQ and RS are two perpendicular diameters of a circle, then PRQS is a :
(A) Rectangle                                                 Â
(B) Trapezium
(C) Square                                                     Â
(D) Rhombus but not square
Ans.    (C)
Sol.     Square
46.  In a rhombus ABCD, ∠A = 60° and AB = 6cm. Then the diagonal BD is :
(A) 2\sqrt 3 cm                                                      Â
(B) 6 cm
(C) 12 cm                                                       Â
(D) Insufficient data
Ans.    (B)
Sol.     ∠A = 60º = ∠B = ∠D
So,     ΔABD is an equilateral triangle.
Hence, Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â BDÂ = 6 cm.
47.  In a || gm ABCD, ∠A = 60°. If the bisectors of ∠A and ∠B meet DC at P then ∠APB is :
(A) Acute angle                                              Â
(B) Obtuse angle
(C) A right angle                                             Â
(D) None of these
Ans.    (C)
Sol.     ∠A + ∠B = 180º
      ∠APB = 180º – \left( {\frac{{\angle A}}{2} + \frac{{\angle B}}{2}} \right)
                            = 180º – 90º
                = 90º
48.  In a || gm ABCD, ∠A = 60°. If the bisectors of ∠A and ∠B meet DC at P then ΔBCP is :
(A) An isosceles triangle                                 Â
(B) A right triangle
(C) An isoscles right triangle     Â
(D) An equilateral triangle
Ans.    (D)
Sol.     ∠A = ∠C = 60°
            ∠CBP = ∠BPC = 60° (∠BPC = 180° – 120° = 60°)
           Hence ΔBCP is an equilateral triangle
49.  In a parallelogram, which one is not correct :
(A) Its opposite sides are equal
(B) Its opposite angles are equal
(C) Diagonals bisect at 90°       Â
(D) None is false
Ans.    (C)
Sol.     In a parallelogram, diagonals do not bisect at 90º.
50.  If PQ and RS are two unequal perpendicular diagonals of a quadrilateral and these are bisecting each other then the quadrilateral is :
(A) Square                                                    Â
(B)Â Rhombus
(C) Kite                                                         Â
(D)Â Both (B) and (C)
Ans.    (B)
Sol.     Quadrilateral can be rhombus.
Â