kedarraj

Quadrilaterals Class 9 MCQ Maths

Quadrilaterals Class 9 MCQ with Solution

1. The figure formed by joining the consecutive mid-points of any rhombus is always-

(A) a square

(B) a rhombus

(C) a parallelogra

(D) None of  the above

Ans.        (C)

Sol.         The figure formed by joining the consecutive mid-points of any rhombus is always a parallelogram (by using mid point theorem.)

quardrilateral class 9 mcq


2.    The quadrilateral formed by joining the mid-points of the sides of a quadrilateral PQRS, taken in order is a rhombus if  :

(A) PQRS is rhombus

(B) PQRS is a parallelogram

(C) Diagonals  of PQRS are perpendicular

(D) Diagonals of PQRS are equal

Ans.        (D)

Sol.         PQ = SR = 1/2 AC

SP  = QR = 1/2 BD

quardrilateral class 9 mcq

For Rhombus           PQ  = SP

so                 1/2 AC  = 1/2 BD

AC  = BD

so diagonals should be equal.


3.   Choose the correct statement :

(A) The diagonals of a parallelogram are equal

(B) The diagonals of a rectangle are perpendicular to each other.

(C) If the diagonals of a quadrilateral intersect at right angles, it is not necessarily a rhombus

(D) Every quadrilateral is either a trapezium or a parallelogram or a kite

Ans.       (C)

Sol.         If the diagonals of a quadrilateral intersect at right angles.

It is not necessarily a rhombus.


4.   ABCD is a rhombus, EABF is a straight line such that EA = AB = BF and ED and FC when produced meet at G, then∠DGC is :

(A) An acute angle

(B) An obtuse angle

(C) A right angle

(D) A reflex angle

Ans.        (C)

Sol.         Let \angle DAB = θ

So \angle CBA = 180^\circ  - \theta

here           DA  = EA

so              quardrilateral class 9 mcq

\angle EDA  = \angle AED

so            \angle AED = \theta /2

similarly   \angle BFC = \frac{{180 - \theta }}{2}

In             \Delta EGF \angle DGC  = 180 - \left[ {\frac{\theta }{2} + \frac{{180 - \theta }}{2}} \right]

= 90°


5.    ABCD is a ||gm. AB is produced to E so that BE = AB. If DE and BC intersect at O and OB = 5 cm, then AD =

(A) 5 cm

(B) 10 cm

(C) 8 cm

(D) Can’t be determined

Ans.        (B)

Sol.         AB  = BE

&           BC  || AD

so O will be mid point of BC

quardrilateral class 9 mcq

so         BC  = CD

&           AD  = BC = 10


6.    In figure, ABCD is a ||gm then ∠A = :

quardrilateral class 9 mcq

(A) 60°

(B) 75°

(C) 90°

(D) None of these

Ans.        (C)

Sol.         \angle A = \angle C = 5a

so                       2a + 3a + 5a  = 180°

                                           10a = 180° 

                                              a  = 18°

so      \angle A   = 5a = 90°


7.     Which one is not true in the following :

(A) A square, rectangle and rhombus are parallelograms

(B) A parallelogram is a trapezium, and a trapezium is also a parallelogram

(C) A rectangle or a rhombus is not necessarily a square

(D) A kite is not a paralleogram

Ans.        (B)

Sol.         A parallelogram is a trapezium but trapezium is also a parallelogram is not true.


8.    One angle of a cyclic trapezium is double the other. The measure of the larger angle is :

(A) 60º

(B) 75º

(C) 80º

(D) 120º

Ans.        (D)

Sol.         \alpha  + 2\alpha = 180°

quardrilateral class 9 mcq

                \alpha = 60°

⇒           2\alpha = 120°


9.    The adjacent sides of a parallelogram are in the ratio of  a : b. The ratio of the corresponding altitude is

(A) a : b

(B) b : a

(C) c2 : b2

(D) b2 : a2

Ans.        (B)

Sol.         Area of parallelogram will be constant

quardrilateral class 9 mcq

                                                      a.h1  = b.h2

\frac{{{h_1}}}{{{h_2}}}  = \frac{b}{a}

10.    A trapezium has its non-parallel sides congruent, then its opposite angles are :

(A) Congruent

(B) Supplementary

(C) Complementary

(D) None of these

Ans.        (B)

Sol.         It will be a cyclic trapezium

So opposite angles will be supplementary.


11.   The sum of the interior angles of a 12 sided polygon is :

(A) 1860o                                                        

(B) 1980o 

(C) 1200o                                                        

(D) 1800o 

Ans.     (D)

Sol.      (n –2) × 180º = 10 × 180º = 1800°


12.  The sum of the interior angles of a polygon is seven times the sum of its exterior angles. Then number of sides in polygon is :

(A) 12                                      

(B) 15

(C) 16                                    

(D) None of these

Ans.     (C)

Sol.        (n – 2) × 180º  = 7 × 360º

\Rightarrow           n   = 16

13.   The interior angles of a pentagon are ao, (a+10)o, (a + 20)o, (a+30)o and (a+40)o. Then which of the following is one of the angles of the pentagon.

(A) 68o                                     

(B) 96o 

(C) 84o                                                            

(D) 108o 

Ans.     (D)

Sol.      a + a + 10º + a + 20º + a + 30º + a + 40º = (5 – 2) × 180º

\Rightarrow          5a   = 440º \Rightarrow            a   = 88º

            angles are 88º, 98º, 108º, 118º and 128º.


14.   In the given figure, ABCD is an isosceles trapezium in which ∠CDA = 2x° and ∠BAD = 3x° then x =:

quardrilateral class 9 mcq

(A) 18°                                     

(B) 27°

(C) 36°                                   

(D) 45°

Ans.     (C)

Sol.      2xº + 3xº = 180º

\Rightarrow          x  = quardrilateral class 9 mcq = 36º

15.    The sum of interior angles of a polygon is three times the sum of its exterior angles. Then number of sides in the polygon is :

(A) 6                                        

(B) 7

(C) 8                                      

(D) 9

Ans      (C)

Sol.      (n – 2) × 180° = 3 × 360°

⇒                 n = 8


16.    The sides BA and DC of the quadrilateral ABCD are produced as shown in the figure then :

quardrilateral class 9 mcq

(A) a + x = b + y                                             

(B)  a + y = b + x

(C) a + b = x + y                                             

(D) None  of  these

Ans.     (C)

Sol.      x + 180º – b + y + 180º – a = 360º

\Rightarrow         a + b   = x + y

17.   Four angles of  an 8-sided polygon are each of 154°. If the remaining four angles are equal, the measure of each remaining angle is :

(A) 116°                                                          

(B) 120°

(C) 124°                                                          

(D) 128°

Ans.     (A)

Sol.      (4×154°) (4 × x) = (8 – 2) × 180°

                                  4x = 1080º – 616º = 464º

                                    x = 116°


18.    ABCD is a || gm. If two diagonals are equal, then \angle A{\bf{B}}C =

(A) 60o                                      

(B) 45o 

(C) 90o                                                            

(D) Can’t be determined.

Ans.     (C)

Sol.      [ABCD will be a rectangle, so ∠ABC = 90°]


19.   The bisectors of the angles of a || gm enclose a :

(A) Parallelogram                                            

(B) Rhombus                         

(C) Rectangle                                                  

(D) Square

Ans.     (C)

Sol.      quardrilateral class 9 mcq

             ABCD be a parallelogram and AP, BP, CQ, DQ are angle bisectors

                                        ∠P  = ∠Q = ∠R = ∠S = 90°

So,                            PQRS is a rectangle.


20.    In a quadrilateral ABCD,  if AO and BO are the bisectors \angle A of \angle B and  respectively,  \angle C = {70^o}and \angle D = {130^o}, then \angle AOB is :

(A) 40o                                     

(B) 80o 

(C) 50o                                    

(D) 100o 

Ans.     (D)

Sol.     quardrilateral class 9 mcq

                              ∠A + ∠B = 360° – (70° + 130°)

                                                = 160°

                                     2(x+y)  = 160°

⇒                                      x+y  = 80°

                                  ∠AOB  = 180° – (x+y) = 100°


21.   If one angle of a parallelogram is 24o less than twice the smallest angle, then the largest angle of  the parallelogram is :

(A) 176°                                              

(B) 68°

(C) 112°                                                     

(D) 102°

Ans.     (C)

Sol.      x + x+(2x–24°) +(2x–24°) =  360°

                           2x + 4x – 48°  =  360°

                                           6x  = 408°

                                             x  = 68°

                          Largest Angle  = 2 × 68° – 24

                                                 = 136° – 24° = 112°


22.   Which one of the following statements is correct for a square :

(A) Diagonals are equal and bisect each other at right angles.

(B) Diagonals are unequal & do not bisect each other.

(C) Diagonals are equal but do not bisect each other.

(D) Diagonals are unequal and bisect each other at right angle.

Ans.     (A)

Sol.      For a square, diagonals are equal and bisect each other at right angles.


23.    The adjacent interior angles of a parallelogram are (2x – 15)o and (7x – 75)o then x =

(A) 25o                                     

(B) 30o 

(C) 35o                                                            

(D) 40o 

Ans.     (B)

Sol.           (2x –15)° +(7x –75)° = 180°

                                           9x  = 180° + 90° = 270°

                                             x  = 30°


24.   In which of the following is the lengths of diagonals equal ?

(A) Rhombus                                                  

(B) Parallelogram

(C) Trapezium                                                  

(D) Rectangle

Ans.     (D)

Sol.      Rectangle


25.   The length of a side of a rhombus is 5 m and one of its diagonals is of length 8 m. The length of the other diagonal is :

(A) 5 m                                    

(B) 7 m

(C) 6 m                                   

(D) 8 m 

Ans.     (C)

Sol.        quardrilateral class 9 mcq

            ABCD is a rhombus

             AO  = \sqrt {{5^2}\, - \,{4^2}} = 3 m

            AC  = 2(AO) = 6 m


26.   If the lengths of two diagonals of a rhombus are 12 cm and 16 cm, then the length of each side of the rhombus is:

(A) 10 cm                                                        

(B) 14 cm                               

(C) cannot be determined

(D) None of these

Ans.     (A)

Sol.        Each side of rhombus  = \sqrt {{6^2} + {8^2}}  = 10\,cm


27.    ABCD is a rectangle with \angle ABD = {40^o}. Then DBC is :

(A) 40o                                     

(B) 90o 

(C) 50o                                                 

(D) None of these

Ans.     (C)

Sol.      ∠DBC = 90° – 40° = 50°


28.    If ABCD is a quadrilateral such that its diagonals AC and BD intersect at O into four triangles of equal area. Then ABCD must be a :

(A) Parallelogram                                            

(B) Rhombus

(C) Square                                                     

(D) Rectangle

Ans.     (A)

Sol.      Parallelogram


29.   In figure  ABCD and AEFG are both || gm.

If ∠C = 60° then ∠F = :

quardrilateral class 9 mcq

(A) 60°                                     

(B) 120°

(C) 150°                                                          

(D) None of these

Ans.     (A)

Sol.     ∠C = ∠F = 60°


30.    ABCD is a rhombus with \angle ABC = 58o. Then \angle ACD is :

(A) 60o                                                

(B) 62o 

(C) 58o                                                

(D) 61o  

Ans.     (D)

Sol.      ∠ACD = \frac{{180^\circ \, - \,58^\circ }}{2}\, = \,61^\circ


31.  In a parallelogram ABCD, AB = 10cm. The altitudes corresponding to the sides AB and AD are 7 cm and 8 cm respectively. Length of the AD is :

quardrilateral class 9 mcq

(A) 5 cm                                                         

(B) 8.75 cm

(C) 9.25 cm                                                     

(D) 11.75 cm 

Ans.     (B)

Sol.      AD × 8 = 10 × 7 \Rightarrow AD = \frac{{10 \times 7}}{8} = 8.75 cm


32.   If O is a point within a quadrilateral then,

(A) OA < OB                                                   

(B) 2.OB = AO.OD

(C) OA2 = OB2 + OC2                                       

(D) OA + OB + OC + OD > AC + BD

Ans.     (D)

Sol.      In ΔAOC and ΔBOD,      OA + OC > AC and OB + OD > BD                             

            Hence,                          OA + OB + OC + OD > AC + BD

quardrilateral class 9 mcq


33.    In the figure, ABCD is a parallelogram and the bisector of ∠ A bisects BC at x. Then,

quardrilateral class 9 mcq

(A) AD = BD                                                   

(B)  AC = \frac{1}{2}AX

(C) AD = 2.AB                                                 

(D) None of these 

Ans.     (C)

Sol.      ∠DAX = ∠XAB =  ∠BXA

            So              ∠1 = ∠2  and  AB = BX = XC

            \Rightarrow        2AB = AD


34.    If each interior angle of a regular polygon is 178o, then the number of sides of that polygon is :

quardrilateral class 9 mcq

(A) 180 sides                                                  

(B) 360 sides

(C) 10 sides                                                    

(D) 178 sides                          

Ans.     (A)

Sol.      exterior angle = (180º – 178º)

                                                = 2º

                      number of sides  = quardrilateral class 9 mcq. = 180


35.    Which of the following is not a polygon :

(A) Triangle                                                     

(B) Square

(C) Circle                                                        

(D) Heptagon

Ans.     (C)

Sol.      Circle


36.   In figure ABCD is a rhombus. If ∠CAB = 2a and ∠BCA = 3a and ∠DAC = a + 40,  find the value of ∠ABC :

quardrilateral class 9 mcq

(A) 70°                                     

(B) 80°

(C) 90°                                     

(D) 60°

Ans.     (B)

Sol.      a + 40°  = 3a

⇒          a = 20°

     ∠ABC  = 180° – (2a + 3a) = 180° – 5a = 80°


37.   The perimeter of a rhombus is 20 cm. One of its diagonal is 8 cm. Then its area:

(A) 24 sq. cm                                                  

(B) 48 sq. cm

(C) 64 sq.cm                                                   

(D) 92 sq. cm

Ans.     (A)

Sol.               Side of rhombus  = \frac{{20}}{4}  = 5 cm

                         Other diagonal  = 2 \times \,\sqrt {{5^2}\, - \,{4^2}} \,\, = \,\,6\,cm

                                        Area  = quardrilateral class 9 mcq.= 24  sq.cm


38.   In figure,  ABCD is a rhombus with ∠BAD = 50o , then (x,y) =

quardrilateral class 9 mcq

 

(A) (25o,65o)                                                     

(B) (25o,50o)

(C) (65o,50o)                                                     

(D) None of these

Ans.     (D)

Sol.      yº = ∠BAC = quardrilateral class 9 mcq = 25º

                            ∠ABC = 2xº

                                       = 180º – 50º

                                       = 130º

\Rightarrow           x = 65º

Hence,                     (x, y)  = (65º, 25º)


39.   The angles of a quadrilateral are x°, x – 10°, x + 30° and 2x°. Find the greatest angle:

(A) 136°                                                          

(B) 180°                                  

(C) 68°                                    

(D) None of these

Ans.     (A)

Sol.      x + x – 10º + x + 30º + 2xº = 360º

                                          5xº  = 360º + 10º – 30º

                                                = 340º

\Rightarrow            xº   = quardrilateral class 9 mcq

                          greatest angle  = 2xº = 68º × 2

                                                = 136º


40.   Two adjacent angles of a parallelogram are in the ratio 4 : 5. The angles are:

(A) 180°, 180°                                                  

(B) 36°, 144°                           

(C) 80°, 100°                                                   

(D) None of these

Ans.     (C)

Sol.         4x + 5x  = 180º

\Rightarrow         x   = 20º

                                 angle are  4x, 5x

\Rightarrow            80º, 100º

41.    If one of the interior angles of a regular polygon is found to be equal to \frac{9}{8} times of one of the interior angles of a regular hexagon, then the number of sides of the polygon is

(A) 4                                          

(B) 5

(C) 7                                          

(D) 8

Ans.     (D)

Sol.      \frac{{(n\, - \,2) \times \,180^\circ }}{n} = \frac{9}{8}\, \times \,\frac{{(6\, - 2) \times \,180^\circ }}{6}

⇒                n  = 8


42.    The diagonals of a rectangle ABCD meet at O. If BOC = 44°, then OAD equals :

(A) 44°                                       

(B) 136°

(C) 88°                                     

(D) 68°

Ans.     (D)

Sol.       quardrilateral class 9 mcq

                                      ∠OAD  = \left( {\frac{{180^\circ \, - \,44^\circ }}{2}} \right)

                                                  = 68°


43.    In the given figure, ABCD is a || gm and angle bisectors of ∠A and ∠B meet at P. Then ∠APB equals :

quardrilateral class 9 mcq

(A) 90°                                       

(B) 45°

(C) 60°                                       

(D) None of these

Ans.     (A)

Sol.                            ∠A + ∠B  = 180º

                                      ∠APB  = 180º – \left( {\frac{{\angle A}}{2} + \frac{{\angle B}}{2}} \right)

                                                  = 180º – quardrilateral class 9 mcq

                                                  = 90º


44.    ABCD is a parallelogram. If AB = 2AD and P mid point of AB, then CPD is equal to :

quardrilateral class 9 mcq

(A) 90°                                       

(B) 60°

(C) 45°                                       

(D) 135°

Ans.     (A)

Sol.         quardrilateral class 9 mcq                                   

                                          ∠A  = 180 –2y

                                            ∠B  = 180 –2x

                                  ∠A + ∠B  = 180°

                  180° – 2y + 180 – 2x  = 180°

                                         x + y  = 90°

                           x + y + ∠CPD  = 180°

                                      ∠CPD  = 90°


45.    If PQ and RS are two perpendicular diameters of a circle, then PRQS is a :

(A) Rectangle                                                  

(B) Trapezium

(C) Square                                                      

(D) Rhombus but not square

Ans.     (C)

Sol.      Square


46.   In a rhombus ABCD, ∠A = 60° and AB = 6cm. Then the diagonal BD is :

(A) 2\sqrt 3 cm                                                       

(B) 6 cm

(C) 12 cm                                                        

(D) Insufficient data

Ans.     (B)

Sol.      ∠A = 60º = ∠B = ∠D

So,          ΔABD is an equilateral triangle.

Hence,                     BD  = 6 cm.

quardrilateral class 9 mcq


47.   In a || gm ABCD, ∠A = 60°. If the bisectors of ∠A and ∠B meet DC at P then ∠APB is :

(A) Acute angle                                               

(B) Obtuse angle

(C) A right angle                                              

(D) None of these

Ans.     (C)

Sol.      ∠A + ∠B = 180º

            ∠APB = 180º – \left( {\frac{{\angle A}}{2} + \frac{{\angle B}}{2}} \right)

                              = 180º – 90º

                               = 90º


48.    In a || gm ABCD, ∠A = 60°. If the bisectors of ∠A and ∠B meet DC at P then ΔBCP is :

(A) An isosceles triangle                                  

(B) A right triangle

(C) An isoscles right triangle      

(D) An equilateral triangle

Ans.     (D)

Sol.      ∠A = ∠C = 60°

                        ∠CBP = ∠BPC  = 60°  (∠BPC = 180° – 120° = 60°)

quardrilateral class 9 mcq

            Hence ΔBCP is an equilateral triangle


49.    In a parallelogram, which one is not correct :

(A) Its opposite sides are equal

(B) Its opposite angles are equal

(C) Diagonals bisect at 90°        

(D) None is false

Ans.     (C)

Sol.      In a parallelogram, diagonals do not bisect at 90º.


50.    If PQ and RS are two unequal perpendicular diagonals of a quadrilateral and these are bisecting each other then the quadrilateral is :

(A)  Square                                                     

(B)  Rhombus

(C)  Kite                                                          

(D)  Both (B) and (C)

Ans.     (B)

Sol.      Quadrilateral can be rhombus.

 

ALSO READ

Quadratic Equations Class 10 CBSE Notes Mathematics
Natural Resources Class 9 CBSE Notes Chapter 14
MCQ Questions of Sound With Solutions Class 9 | Physics

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top
Scroll to Top