Lines and Angles Class 9 MCQ with Solutions
1.  In fig. OE is the bisector of \angle AOB and OF is the angle bisector of \angle AOC, then the value of \angle EOF is :
(A) 90°
(B) 180°
(C) 270°
(D) None of these
Ans.       (A)
Sol.        2\angle EOA + 2\angle AOF = 180°
\angle EOA + \angle AOF = 90° \angle EOF = 90°2.  Supplementary and complementary angles need not be :
(A) Equal to 180°, 90°
(B) Adjacent
(C) Angles
(D) None of these
Ans.       (B)
Sol.        They need to be adjacent
3.  From the adjoining figure \angle POR, \angle QOR form a linear pair and a – b = 40°. Then a, b are:
(A) 110°, 70°
(B) 70°, 100°
(C) 80°, 120°
(D) 120°, 80°
Ans.       (A)
Sol.          a + b = 180°
a – b = 40°
so     a = 110°
b = 70°
4.  The sum of the two angles in a triangle is 95° and their difference is 25°. Then the angles of the triangle is
(A) 75°, 50°, 55°
(B) 85°, 65°, 30°
(C) 50°, 45°, 85°
(D) 60°, 35°, 85°
Ans.       (D)
Sol.        Let three angles a, b, c
so       a + b = 95°
         a – b = 25°
so       a = 60°
         b = 35°
&        c = 180 – (a + b)
         c = 85°
5.  The value of x in the following fig. is :
(A) 30°
(B) 45°
(C) 60°
(D) None of these
Ans.       (A)
Sol.        \angle QPS = 90° – 60° = 30°
According to law of light
\angle SPR = 30°x = \angle SPR = 30° Alternate angle
6.  In the figure if BD || EF, then \angle CEF is
(A)100°
(B) 120°
(C) 140°
(D) 160°
Ans.       (C)
Sol.        \angle CEF = 180^\circ - 40^\circ = 140^\circ
7.  In the figure PQ || ST, then \angle QRS is equal to :
(A) 30°
(B) 40°
(C) 50°
(D) 60°
Ans.       (A)
Sol.      Â
Draw      UV || PQ || ST
so \angle QRU = 180° – 100° = 80°
\angle SRV = 180° – 110° = 70°so \angle R = 180 – 80° – 70° = 30°
8.  In figure, l || m and transversal n intersects them at P and Q respectively, find the value of x.
(A)Â 25
(B) 27.5
(C) 22.5
(D) 17.5
Ans.       (A)
Sol.         180 – (4x – 30) = 4x + 10
180 – 4x + 30 = 4x + 10
200Â = 8x
x = 25°
9.  In figure, for what value of x will line l be parallel to line m ?
(A) 50
(B) 70
(C) 60
(D) 40
Ans.       (A)
Sol.         180 – (x – 10) = 2x + 40
150Â = 3x
x = 50
10.  Number of lines that can be drawn through a given point are :
(A) 1
(B) 2
(C) 0
(D) Infinite
Ans.       (D)
Sol.        Infinite lines can be drawn
11.  From the adjoining figure the value of y is :
(A) 24
(B) 22
(C) 20
(D) 10
Ans.    (D)
Sol.     5y° + 5y° + 4y° + 4y° + 9y° + 9y° = 360°
36y° = 360°
y° = 10°
12.  In the given figure, if \angle BOC = 7x + 20° and \angle COA = 3x° then the value of x for which AOB becomes a straight line is :
(A) 16°
(B) 48°
(C) 60°
(D) 72°
Ans.    (A)
Sol.     7x + 20° + 3x = 180°
10 x = 160° ⇒ x = 16°
13.  Two angles whose measures are a & b are such that 2a – 3b = 60° then find\frac{{4a}}{{5b}} , if they form a linear pair
(A) 1.6
(B) 2
(C) 3.1
(D) 4.5
Ans.    (A)
Sol.    a + b = 180°            ….(1)
2a – 3b = 60°              ….(2)
i.e. \frac{{a + b}}{{2a - 3b}} = \frac{{180^\circ }}{{60^\circ }} = \frac{3}{1}
a + b = 6a – 9b
10b = 5a
\frac{a}{b}= \frac{2}{1}i.e. \frac{{4a}}{{5b}} = \frac{8}{5} = 1.6
14.  The sum of internal and external bisectors of an angle is :
(A) 90o
(B) 180o
(C) 270o
(D) 360o
Ans.    (A)
Sol.     Let angle is x, i.e. internal bisector =\frac{x}{2} , external bisector =90 - \frac{x}{2}.
Â
Sum of internal and external bisector = 90°
15.  The angle between the bisectors of two adjacent supplementary angles is :
(A) Obtuse angle
(B) Acute angle
(C) Right angle
(D) Can’t be determined
Ans.    (C)
Sol.     Let \angle AOC and \angle AOB are two supplementary angles so that angle between the bisectors of two adjacent supplementary angle is right angle.
16.  In given figure. OD is angle bisector of \angle AOB then which of the following is not true :
(A) \angle AOD = \angle DOB
(B) Point P on OD remains equidistant from OA and OB
(C) \angle AOB and \angle BOD are adjacent angles.
(D) None of these
Ans.    (C)
Sol.     Here \angle AOD and \angle BOD are adjacent angles i.e. option (C) is false.
17.  The complementary angles are such that two times the measure of one is equal to three times the measure of the other, then the measure of the larger angle is
(A) 36°
(B) 54°
(C) 64°
(D) 46°
Ans.    (B)
Sol.     Let angles are x°, (90° – x°)
⇒     2 x° = 3 (90 – x°)
2x = 270° – 3x°
5x° = 270°
⇒    x° = 54°
18.  In figure, find x :
(A) 120°
(B) 130°
(C) 135°
(D) 140°
Ans.    (B)
Sol.     2x° + 100° = 360°
2x° = 260°
x° = 130°
19.  In the given figure, AB is a mirror; PQ is the incident ray and QR, the reflected ray. If \angle PQR = 112°, then \angle PQA equals
(A) 68°
(B) 112°
(C) 34°
(D) 54°
Ans.    (C)
Sol. Â Â Â Â Let \angle PQA = x
i.e. \angle RQB = x
2x + 112° = 180° ⇒ x = 34°
20.  In the adjoining figure, AOB is a straight line. Then \angle BOD equals
(A) 45°
(B) 110°
(C) 70°
(D) 90°
Ans.    (C)
Sol.          x° + 65° + 2x° – 20° = 180°
3 x° = 135°
x° = 45°
⇒   \angle BOD = 2 × 45° – 20° = 70°
21.  In given figure find x :
(A) 141°
(B) 70°
(C) 105°
(D) 45°
Ans.    (A)
Sol.         x + 25° + 104° + 90° = 360°
x = 141°
22.  What value of x will make AOB a straight line ?
(A) 30o
(B) 50o
(C) 49o
(D) Can’t be determined
Ans.    (B)
Sol.           2x + 30° + 2x – 50° = 180°
4x = 200
x = 50°
23.  If two parallel lines are intersected by a transversal line, then the bisectors of the interior angles form a :
(A) Square
(B) Rectangle
(C) Parallelogram
(D) Trapezium
Ans.    (B)
Sol.     Let AB, CB, AD and CD are angle bisector of interior angles
i.e. \angle BAD = \angle BCD = \angle ABC = \angle ADC = 90°
i.e.  ABCD is a rectangle.
24.  The measure of angle, if 4 times its supplement is 104o more than 8 times its complement is :
(A) 26o
(B) 52o
(C) 104o
(D) 65o
Ans.    (A)
Sol.     Let angle be x°.
So,            4 (180° – x) = 8 (90° – x) + 104°
180° – x = 180° – 2x + 26°
x = 26°
25.  The measure of an angle is four times the measure of its supplementary angle. Then the angles are :
(A) 36°, 144°
(B) 40°, 160°
(C) 18°, 72°
(D) 50°, 200°
Ans.    (A)
Sol.     Let angles are         x°, (180° – x°)
i.e.    x° = 4 (180° – x°)
x° = 720° – 4x°
5 x° = 720°
⇒      x° = 144°
i.e. angles 144° and 36°.
26.  The supplement of an angle is one third of itself. Then the angle and its supplement are :
(A) 135°, 45°
(B) 60°, 180°
(C) 120°, 360°
(D) 60°, 120°
Ans.    (A)
Sol.     Let angles are x, 180° – x
i.e.      180° – x = \frac{1}{3}x
⇒        540° – 3x = x
4x = 540°
x = 135°
i.e. angles are 135°, 45°.
27.  An angle is 14° more than its complementary angle then angle is :
(A) 38°
(B) 52°
(C) 50°
(D) 48°
Ans.    (B)
Sol.     Let angles are x°, (90 – x°)
So,     x° = 14° + (90° – x)
2x° = 104°
x° = 52°
28.  The angle which is twice its supplement is
(A) 120°
(B) 90°
(C) 60°
(D) 30°
Ans.    (A)
Sol.     Let angle is x, then its supplement is 180° – x
x° = 2(180° – x°)
3 x° = 360°
x° = 120°
29.  The angle which exceeds its complement by 20° is :
(A) 45°
(B)55°
(C) 70°
(D) 110°
Ans.    (B)
Sol.     Let angle is x, then its complement is 90° – x
x° = (90° – x) + 20°
2 x° = 110°
⇒       x = 55°
30.  In the adjoining figure AB || CD and BC || ED then the value of x is :
(A) 95o
(B) 90o
(C) 85o
(D) 80o
Ans.    (A)
Sol.     x° = 180° – 85° = 95°
31.  In the adjacent figure the value of x if AB || CD and EF || CD, is:
(A) 45°
(B) 55°
(C) 60°
(D) 70°
Ans.    (B)
Sol.     \angle ECD = 180° – 150° = 30°
Now \angle ABC = \angle BCE + \angle ECD
= 25° + 30° = 55°
In the adjoining figure AB || CD,
32.  \angle 1\,\,:\,\angle 2 = 3:2Then \angle 6 is :
(A) 72o
(B) 36o
(C) 108o
(D) 144o
Ans.    (A)
Sol.     \angle 1 + \angle 2 = 3x + 2x = 5x
So,      5 x = 180°
⇒            x = 36°
\angle 2 = 2x = 72°⇒  \angle 6 = 72° (corresponding to \angle 2)
33.  From the adjoning figure AB || DE, then the value of x° is :
(A) 25°
(B) 35°
(C) 45°
(D) 55°
Ans.    (B)
Sol.     Draw a line through C parallel to AB and DE.
x° = 180° – (85° + 60°) = 180° – 145° = 35°
34.  In figure, if l || m, then the value of x is :
(A) 60o
(B) 65o
(C) 30o
(D) 35o
Ans.    (D)
Sol.  Â
x° = 60° – 25° = 35°
35.  P and Q are two plane mirrors placed parallel to each other. An incident ray AB to the first mirror is reflected twice in the direction CD. Then
(A) AB || CD
(B) AB || PQ
(C) AB || CN
(D) Can’t say
Ans.    (A)
Sol.     \angle 1 = \angle 2, \angle 2 = \angle 3, \angle 3 = \angle 4
i.e. \angle 1 + \angle 2 = \angle 3 + \angle 4
i.e. AB || CD.
36.  In figure, l || m and transversal n intersects them at P and Q respectively, find the value of x.
(A)Â 25
(B) 27.5
(C) 22.5
(D) 17.5
Ans.    (A)
Sol.    4x – 30° + 4x + 10° = 180°
8 x° = 200°
x° = 25°
37.  Which one of the following is not correct :
(A)Â Two lines which are both parallel to the same line are parallel to each other.
(B)Â Two distinct lines cannot have more than one point in common.
(C)Â Two intersecting lines can be both parallel to the same line
(D)Â A line contains infinite number of points
Ans.    (C)
Sol.     Two intersecting lines can not be parallel to the same line.
38.  Which one of the following is correct :
(A)Â A line segment has no definite length
(B)Â Two lines always intersect at a point
(C)Â The ray AB is the same as the ray BA
(D)Â A linesegment AB is same as the linesegment BA
Ans.    (D)
Sol.     A linesegment AB is same as the linesegment BA.
39.  If one angle of triangle is equal to the sum of the other two then triangle is :
(A) acute triangle
(B) obtuse triangle
(C) right triangle
(D) Can’t say
Ans.    (C)
Sol.     Let angles are \angle A, \angle B, \angle C.
\angle A = \angle B + \angle Ci.e., \angle A = 90º
i.e., triangle is right angle triangle.
40.  If two angles are supplementary, then the sum of the two angles is :
(A) 90°
(B) 360°
(C) 180°
(D) 270º
Ans.    (C)
Sol.     Sum of two supplementary angles is 180º.
41.  In figure, AB || CD then x = :
(A) 64°
(B) 62°
(C) 60°
(D) 58°
Ans.    (A)
Sol.  Â
From figure     x + y = 112° and y = 48°
i.e.    x + 48° = 112°
x = 64°
42.  In figure, AB || DC and DE || BF then y :
(A) 100°
(B) 105°
(C) 110°
(D) 115°
Ans.    (B)
Sol.     \angle DCF = 180° – (40° + 65°) = 75°
i.e.     y = 180° – 75° = 105°
43.  Two parallel lines have :
(A) a common point
(B) two common points
(C) no common point
(D) infinite common points
Ans.    (C)
Sol.     Two parallel lines have no common point but two co-incident lines have infinite common points.
44.  In the given figure find y, if x + y = 80° :
(A) 20°
(B) 60°
(C) 40°
(D) 30°
Ans.    (A)
Sol.        x + y = 80°         ….(1)
4x + 6y = 360°        ….(2)
From eqn. (2)
4(x + y) + 2y = 360°
2y = 360° – 320° = 40°
y = 20°
45.  In the given figure find x :
(A) 120°
(B) 40°
(C) 60°
(D) 30°                                          Â
Ans.    (C)
Sol.        2x + 60° = 180°
⇒           2x = 120°
⇒             x = 60°
46.  Two intersecting lines have :
(A) a common point
(B) two common point
(C) no common point
(D) infinite common points
Ans.    (A)
Sol.     Two intersecting lines have only one common point.
47.  If two parallel lines intersected by a transversal, then each pair of consecutive interior angles so formed is :
(A) Equal
(B) Complementary
(C) Supplementary
(D) None of these
Ans.    (C)
Sol.     Sum of these two angles is 180°, i.e. they are supplementary pair.
48.  From the adjoining figure x = 30°. The value of y° is :
(A) 25°
(B) 24°
(C) 36°
(D) 45°
Ans.    (B)
Sol.       2x° = 2 × 30° = 60°
5y = 120°
⇒       y = 24°
49.  From the adjoining figure the value of y is :
(A) 24°
(B) 22°
(C) 9°
(D) 10°
Ans.    (C)
Sol.     7y + 3y + 10y + 10y + 3y + 7y = 360°
40y = 360°
⇒      y = 9°
50.  In figure, if AB || CD and CD || EF, then \angle FAC = :
(A) 30°
(B) 40°
(C) 45°
(D) 50°                                                         Â
Ans.    (B)
Sol.     \angle CAB = 180° – 140° = 40°
\angle FAC = \angle FAB – \angle CAB= 80° – 40° = 40°