kedarraj

Lines and Angles Class 9 MCQ with Solutions Math

Lines and Angles Class 9 MCQ with Solutions

1.    In fig. OE is the bisector of \angle AOB and OF is the angle bisector of  \angle AOC, then the value of \angle EOF  is :

lines and angles class 9 mcq

(A) 90°

(B) 180°

(C) 270°

(D) None of these

Ans.        (A)

Sol.         2\angle EOA + 2\angle AOF = 180°

\angle EOA + \angle AOF = 90° \angle EOF = 90°

2.   Supplementary  and complementary  angles need not be :

(A) Equal to 180°, 90°

(B) Adjacent

(C) Angles

(D) None  of  these

Ans.        (B)

Sol.         They need to be adjacent


3.   From the adjoining figure \angle POR, \angle QOR form a linear pair  and a – b = 40°. Then a, b are:

lines and angles class 9 mcq

(A) 110°, 70°

(B) 70°, 100°

(C) 80°, 120°

(D) 120°, 80°

Ans.        (A)

Sol.             a + b = 180°

a – b  = 40°

so          a  = 110°

b = 70°


4.   The sum of the two angles in a triangle is 95° and their difference is 25°. Then the  angles of the triangle  is

(A) 75°, 50°, 55°

(B) 85°, 65°, 30°

(C) 50°, 45°, 85°

(D) 60°, 35°, 85°

Ans.        (D)

Sol.         Let three angles a, b, c

so             a + b  = 95°

                 a – b  = 25°

so             a  = 60°

                 b  = 35°

&               c  = 180 – (a + b)

                 c  = 85°


5.   The value of x in the following fig. is :

lines and angles class 9 mcq

(A) 30°

(B) 45°

(C) 60°

(D) None of these

Ans.        (A)

Sol.         \angle QPS = 90° – 60° = 30°

According to law of light

\angle SPR = 30°

x  = \angle SPR = 30° Alternate angle

lines and angles class 9 mcq


6.    In the figure if BD || EF, then \angle CEF is

lines and angles class 9 mcq

(A)100°

(B) 120°

(C) 140°

(D) 160°

Ans.        (C)

Sol.         \angle CEF = 180^\circ  - 40^\circ  = 140^\circ


7.    In the figure PQ || ST, then  \angle QRS is equal to :

lines and angles class 9 mcq

(A) 30°

(B) 40°

(C) 50°

(D) 60°

Ans.        (A)

Sol.        lines and angles class 9 mcq

Draw           UV  || PQ || ST

so \angle QRU = 180° – 100° = 80°

\angle SRV = 180° – 110° = 70°

so \angle R = 180 – 80° – 70° = 30°


8.   In figure, l || m and transversal n intersects them at P and Q respectively, find the value of x.

lines and angles class 9 mcq

(A)  25

(B) 27.5

(C) 22.5

(D) 17.5

Ans.        (A)

Sol.          180 – (4x – 30)  = 4x + 10

180 – 4x + 30  = 4x + 10

200  = 8x

x  = 25°


9.   In figure, for what value of x will line l be parallel to line m ?

lines and angles class 9 mcq

(A) 50

(B) 70

(C) 60

(D) 40

Ans.        (A)

Sol.           180 – (x – 10)  = 2x + 40

150  = 3x

x  = 50


10.    Number of lines that can be drawn through a given point are :

(A) 1

(B) 2

(C) 0

(D) Infinite

Ans.        (D)

Sol.         Infinite lines can be drawn


11.   From the adjoining figure the value of  y is :

lines and angles class 9 mcq

(A) 24

(B) 22

(C) 20

(D) 10

Ans.     (D)

Sol.      5y° + 5y° + 4y° + 4y° + 9y° + 9y° = 360°

36y°  = 360°

y°  = 10°


12.   In the given figure, if  \angle BOC = 7x + 20° and \angle COA = 3x°  then the value of  x for which AOB becomes a straight line is :

lines and angles class 9 mcq

(A) 16°

(B) 48°

(C) 60°

(D) 72°

Ans.     (A)

Sol.         7x + 20° + 3x  = 180°

10 x  = 160°  ⇒ x = 16°


13.   Two angles whose measures are a & b are such that 2a – 3b = 60°  then find\frac{{4a}}{{5b}} ,  if they form a linear pair

(A) 1.6

(B) 2

(C) 3.1

(D) 4.5

Ans.     (A)

Sol.        a + b  = 180°             ….(1)

2a – 3b  = 60°               ….(2)

i.e. \frac{{a + b}}{{2a - 3b}} = \frac{{180^\circ }}{{60^\circ }} = \frac{3}{1}

a + b  = 6a – 9b

10b  = 5a

\frac{a}{b}= \frac{2}{1}

i.e. \frac{{4a}}{{5b}} = \frac{8}{5} = 1.6


14.    The sum of internal and external bisectors of an angle is :

(A) 90o

(B) 180o

(C) 270o

(D) 360o

Ans.     (A)

Sol.      Let angle is x, i.e. internal bisector =\frac{x}{2} , external bisector =90 - \frac{x}{2}.

 

Sum of internal and external bisector = 90°


15.   The angle between the bisectors of two adjacent supplementary angles is :

(A) Obtuse angle

(B) Acute angle

(C) Right angle

(D) Can’t be determined

Ans.     (C)

Sol.      Let \angle AOC and \angle AOB are two supplementary angles so that angle between the bisectors of two adjacent supplementary angle is right angle.

lines and angles class 9 mcq


16.   In given figure. OD is angle bisector of \angle AOB  then which of the following is not true :

lines and angles class 9 mcq

(A) \angle AOD = \angle DOB

(B) Point P on OD remains equidistant from OA and OB

(C) \angle AOB and \angle BOD are adjacent angles.

(D) None of these

Ans.     (C)

Sol.      Here \angle AOD and \angle BOD are adjacent angles i.e. option (C) is false.


17.    The complementary angles are such that two times the measure of one is equal to three times the measure of the other, then the measure of the larger angle is

(A) 36°

(B) 54°

(C) 64°

(D) 46°

Ans.     (B)

Sol.      Let angles are x°, (90° – x°)

⇒         2 x°  = 3 (90 – x°)

2x  = 270° – 3x°

5x°  = 270°

⇒       x° = 54°


18.   In figure, find x :

lines and angles class 9 mcq

(A) 120°

(B) 130°

(C) 135°

(D) 140°

Ans.     (B)

Sol.          2x° + 100°  = 360°

2x°  = 260°

x°  = 130°


19.   In the given figure, AB is a mirror; PQ is the incident ray and QR, the reflected ray. If \angle PQR = 112°,  then \angle PQA equals

lines and angles class 9 mcq

(A) 68°

(B) 112°

(C) 34°

(D) 54°

Ans.     (C)

Sol.      Let \angle PQA = x

i.e. \angle RQB = x

2x + 112°  = 180° ⇒  x = 34°


20.   In the adjoining figure, AOB is a straight line. Then \angle BOD equals

lines and angles class 9 mcq

(A) 45°

(B) 110°

(C) 70°

(D) 90°

Ans.     (C)

Sol.           x° + 65° + 2x° – 20°  = 180°

3 x°  = 135°

x°  = 45°

⇒      \angle BOD = 2 × 45° – 20° = 70°


21.    In given figure find x :

lines and angles class 9 mcq

(A) 141°

(B) 70°

(C) 105°

(D) 45°

Ans.     (A)

Sol.           x + 25° + 104° + 90°  = 360°

x  = 141°


22.   What value of x will make AOB a straight line ?

lines and angles class 9 mcq

(A) 30o

(B) 50o

(C) 49o

(D) Can’t be determined

Ans.     (B)

Sol.            2x + 30° + 2x – 50°  = 180°

4x  = 200

x  = 50°


23.   If two parallel lines are intersected by a transversal line, then the bisectors of the interior angles form a :

(A) Square

(B) Rectangle

(C) Parallelogram

(D) Trapezium

Ans.     (B)

Sol.      Let AB, CB, AD and CD are angle bisector of interior angles

lines and angles class 9 mcq

i.e.  \angle BAD = \angle BCD = \angle ABC  = \angle ADC = 90°

i.e.   ABCD is a rectangle.


24.   The measure of angle, if 4 times its supplement is 104o more than 8 times its complement is :

(A) 26o

(B) 52o

(C) 104o

(D) 65o

Ans.     (A)

Sol.      Let angle be x°.

So,             4 (180° – x)  = 8 (90° – x) + 104°

180° – x  = 180° – 2x + 26°

x  = 26°


25.    The measure of an angle is four times the measure of its supplementary  angle. Then the angles are :

(A) 36°, 144°

(B) 40°, 160°

(C) 18°, 72°

(D) 50°, 200°

Ans.     (A)

Sol.      Let angles are          x°,  (180° – x°)

i.e.        x°  = 4 (180° – x°)

x°  = 720° – 4x°

5 x°  = 720°

⇒           x° = 144°

i.e. angles 144° and 36°.


26.   The supplement of an angle is one  third  of itself. Then the angle and its supplement are :

(A) 135°, 45°

(B) 60°, 180°

(C) 120°, 360°

(D) 60°, 120°

Ans.     (A)

Sol.      Let angles are x, 180° – x

i.e.            180° – x  = \frac{1}{3}x

⇒               540° – 3x  = x

4x  = 540°

x  = 135°

i.e. angles are 135°, 45°.


27.    An angle is 14° more than its complementary angle then angle is :

(A) 38°

(B) 52°

(C) 50°

(D) 48°

Ans.     (B)

Sol.      Let angles are x°, (90 – x°)

So,          x°  = 14° + (90° – x)

2x°  = 104°

x°  = 52°


28.   The angle  which is twice its  supplement is

(A) 120°

(B) 90°

(C) 60°

(D) 30°

Ans.     (A)

Sol.      Let angle is x, then its supplement is 180° – x

x°  = 2(180° – x°)

3 x°  = 360°

x°  = 120°


29.   The angle  which exceeds its complement by  20° is :

(A) 45°

(B)55°

(C) 70°

(D) 110°

Ans.     (B)

Sol.      Let angle is x, then its complement is 90° – x

x°  = (90° – x) + 20°

2 x°  = 110°

⇒             x =  55°


30.   In the adjoining figure AB || CD and BC || ED then the value of x is :

lines and angles class 9 mcq

(A) 95o

(B) 90o

(C) 85o

(D) 80o

Ans.     (A)

Sol.      x° = 180° – 85° = 95°


31.   In the adjacent figure the value of x if AB || CD and EF || CD, is:

lines and angles class 9 mcq

(A) 45°

(B) 55°

(C) 60°

(D) 70°

Ans.     (B)

Sol.      \angle ECD = 180° – 150° = 30°

Now \angle ABC = \angle BCE + \angle ECD

= 25° + 30° = 55°

In the adjoining figure AB || CD,


32.   \angle 1\,\,:\,\angle 2 = 3:2Then \angle 6 is :

lines and angles class 9 mcq

(A) 72o

(B) 36o

(C) 108o

(D) 144o

Ans.     (A)

Sol.      \angle 1 + \angle 2 = 3x + 2x = 5x

So,           5 x  = 180°

⇒             x = 36°

\angle 2 = 2x = 72°

⇒  \angle 6 = 72°  (corresponding to \angle 2)


33.   From the adjoning figure AB || DE, then the value of x° is :

lines and angles class 9 mcq

(A) 25°

(B)  35°

(C) 45°

(D) 55°

Ans.     (B)

Sol.      Draw a line through C parallel to AB and DE.

x°  = 180° – (85° + 60°) = 180° – 145° = 35°


34.   In figure, if l || m, then the value of x is :

lines and angles class 9 mcq

(A) 60o

(B) 65o

(C) 30o

(D) 35o

Ans.     (D)

Sol.      lines and angles class 9 mcq

x° = 60° – 25° = 35°


35.   P and Q are  two  plane  mirrors  placed parallel to each other. An incident ray AB to the first mirror is reflected twice in the direction CD. Then

lines and angles class 9 mcq

(A) AB || CD

(B) AB || PQ

(C) AB || CN

(D) Can’t say

Ans.     (A)

Sol.      \angle 1 = \angle 2,  \angle 2 = \angle 3,  \angle 3 = \angle 4

i.e.  \angle 1 + \angle 2 = \angle 3 + \angle 4

i.e.  AB  || CD.


36.   In figure, l || m and transversal n intersects them at P and Q respectively, find the value of x.

lines and angles class 9 mcq

(A)  25

(B) 27.5

(C) 22.5

(D) 17.5

Ans.     (A)

Sol.       4x – 30° + 4x + 10°  = 180°

8 x°  = 200°

x°  = 25°


37.   Which one of the following is not correct :

(A) Two lines which are both parallel to the same line are parallel to each other.

(B) Two distinct lines cannot have more than one point in common.

(C) Two intersecting lines can be both parallel to the same line

(D) A line contains infinite number of points

Ans.     (C)

Sol.      Two intersecting lines can not be parallel to the same line.


38.   Which one of the following is correct :

(A) A line segment has no definite length

(B) Two lines always intersect at a point

(C) The ray AB is the same as the ray BA

(D) A linesegment AB is same as the linesegment BA

Ans.     (D)

Sol.      A linesegment AB is same as the linesegment BA.


39.    If one angle of triangle is equal to the sum of the other two then triangle is :

(A) acute triangle

(B) obtuse triangle

(C) right triangle

(D) Can’t say

Ans.     (C)

Sol.      Let angles are \angle A, \angle B, \angle C.

\angle A = \angle B + \angle C

i.e., \angle A  = 90º

i.e., triangle is right angle triangle.


40.    If two angles are supplementary, then the sum of the two angles is :

(A) 90°

(B) 360°

(C) 180°

(D) 270º

Ans.     (C)

Sol.      Sum of two supplementary angles is 180º.


41.    In figure, AB || CD then x = :

lines and angles class 9 mcq

(A) 64°

(B) 62°

(C) 60°

(D) 58°

Ans.     (A)

Sol.      lines and angles class 9 mcq

From figure         x + y  = 112° and y = 48°

i.e.        x + 48°  = 112°

x  = 64°


42.   In figure, AB || DC and DE || BF then y  :

lines and angles class 9 mcq

(A) 100°

(B) 105°

(C) 110°

(D) 115°

Ans.     (B)

Sol.      \angle DCF = 180° – (40° + 65°) = 75°

i.e.         y  = 180° – 75° = 105°


43.    Two parallel lines have :

(A) a common point

(B) two common points

(C) no common point

(D) infinite common points

Ans.     (C)

Sol.      Two parallel lines have no common point but two co-incident lines have infinite common points.


44.   In the given figure find y, if x + y = 80° :

lines and angles class 9 mcq

(A) 20°

(B) 60°

(C) 40°

(D) 30°

Ans.     (A)

Sol.           x + y  = 80°          ….(1)

4x + 6y  = 360°         ….(2)

From eqn. (2)

4(x + y) + 2y  = 360°

2y  = 360° – 320° = 40°

y  = 20°


45.   In the given figure find x :

lines and angles class 9 mcq

(A) 120°

(B) 40°

(C) 60°

(D) 30°                                             

Ans.     (C)

Sol.           2x + 60° =  180°

⇒                     2x = 120°

⇒                        x =  60°


46.   Two intersecting lines have :

(A) a common point

(B) two common point

(C) no common point

(D) infinite common points

Ans.     (A)

Sol.      Two intersecting lines have only one common point.


47.   If two parallel lines intersected by a transversal, then each pair of consecutive interior angles so formed is :

(A) Equal

(B) Complementary

(C) Supplementary

(D) None of these

Ans.     (C)

Sol.      Sum of these two angles is 180°, i.e. they are supplementary pair.


48.    From the adjoining figure x = 30°. The value of y° is :

lines and angles class 9 mcq

(A) 25°

(B) 24°

(C) 36°

(D) 45°

Ans.     (B)

Sol.         2x°  = 2 × 30° = 60°

5y  = 120°

⇒            y = 24°


49.   From the adjoining figure the value of y is :

lines and angles class 9 mcq

(A) 24°

(B) 22°

(C) 9°

(D) 10°

Ans.     (C)

Sol.      7y + 3y + 10y + 10y + 3y + 7y = 360°

40y = 360°

⇒           y = 9°


50.    In figure, if AB || CD and CD || EF, then \angle FAC = :

lines and angles class 9 mcq

(A) 30°

(B) 40°

(C) 45°

(D) 50°                                                           

Ans.     (B)

Sol.      \angle CAB = 180° – 140° = 40°

\angle FAC = \angle FAB – \angle CAB

= 80° – 40° = 40°

also read

Similar Triangles Class 10 CBSE Notes Mathematics
Carbon and Its Compounds MCQ Questions | Science Class 10
Quadrilaterals Class 9 MCQ Maths

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top
Scroll to Top