kedarraj

Areas of Combinations of Plane Figures Notes

Area of Combination of Plane Figures Notes

Areas of combinations of plane figures

In our daily life we come across various plane figures, which are combinations of two or more plane figures. For example, window designs, flower beds, circular paths etc. In this section, we shall discuss problems of combinations of plane figures.

Important formulae

  1. Heron’s formula : Area of a triangle =\sqrt {s(s - a)(s - b)(s - c)} . Where s = Semi-perimeter and a, b, c are the sides of the triangles.
  2. Area of a right angled triangle = \frac{1}{2}× base × altitude
  3. Area of an equilateral triangle =\frac{{\sqrt 3 }}{4}a2.
  4. Area of a rectangle = Length × breadth
  5. Area of a square of side ‘a’ = a2.
  6. Length of diagonal of a square of a side ‘a’ =\sqrt 2 a .
  7. Perimeter of a square of side ‘a’ = 4a.
  8. Perimeter of a rectangle of sides ‘a’ and ‘b’ = 2(a + b).
  9. Area of a parallelogram = Base × Height
  10. Area of a rhombus =\frac{1}{2}d1d2. Where d1 and d2 are the lengths of its diagonals.
  11. Area of a trapezium =\frac{1}{2} (a + b)h. Where a and b are lengths of two parallel sides and h is the distance between them.
  12. Area of a circle = pir2.
  13. Area of a quadrant of a circle =\frac{1}{4}  pir2.
  14. Circumference of a circle = 2pir.
  15. Perimeter of a semi-circle = pir + 2r.
  16. Area of a ring with inner radius r and outer radius R = pi(R2– r2).
  17. Length of an arc =\frac{{\pi r\theta }}{{180^\circ }} .
  18. Area of a sector of a circle = A =\frac{{\pi {r^2}\theta }}{{360^\circ }}.
  19. Area of a sector of a circle = A =\frac{{lr}}{2}, where l = length of arc
  20. Area of a segment of a circle =\frac{{\pi {r^2}\theta }}{{360^\circ }}-\frac{{{r^2}\sin \theta }}{2}.

Illustrations

Ex.1.      Find the area of the shaded region in figure, where radii of the two concentric circles with centre O are 7 cm and 14 cm respectively and ∠AOC = 40°.

Answer

Sol.         We have,

Area of ring = pi (R2 – r2)

= pi × (142 – 72)

= 462 cm2

plane

Figure 

Area of the region ABDC = Area of sector AOC – Area of sector BOD

= \left( {\frac{{40}}{{360}} \times \frac{{22}}{7} \times 14 \times 14 - \frac{{40}}{{360}} \times \frac{{22}}{7} \times 7 \times 7} \right)cm2

= \left( {\frac{1}{9} \times 22 \times 14 \times 2 - \frac{1}{9} \times 22 \times 7 \times 1} \right) cm2

=\frac{{22}}{9} \times \left( {28 - 7} \right)  cm2 = \frac{{154}}{3}cm2

Hence,  Required shaded area =\left( {462 - \frac{{154}}{3}} \right) cm2 =  \frac{{1232}}{3}cm2 = 410.67 cm2

Ex. 2.     PQRS is a diameter of a circle of radius 6 cm. The lengths PQ, QR and RS are equal Semi-circles are drawn on PQ and QS as diameters as shown in figure Find the perimeter and area of the shaded region.

Answer

Sol.         PS = Diameter of a circle of radius 6 cm = 12 cm

plane

Figure 

∴  PQ = QR = RS = \frac{{12}}{3} = 4 cm

QS = QR + RS = (4 + 4) cm = 8 cm

Hence, required perimeter = Arc of semi-circle of radius 6 cm + Arc of semi-circle of radius 4 cm

+ Arc of semi-circle of radius 2 cm

= (pi× 6 +pi × 4 + pi × 2) cm

= 12pi cm

Required area   = Area of semi-circle with PS as diameter + Area of semi-circle with PQ as

diameter – Area of semi-circle with QS as diameter.

= \frac{1}{2} \times \frac{{22}}{7} (6)2 +\frac{1}{2} \times \frac{{22}}{7}  × 22 – \frac{1}{2} \times \frac{{22}}{7} × (4)2

= \frac{1}{2} \times \frac{{22}}{7} (62 + 22 – 42)

=\frac{1}{2} \times \frac{{22}}{7}× 24 = \frac{{264}}{7}cm2 = 37.71 cm2

Ex. 3.     A paper is in the form of a rectangle ABCD in which AB = 20 cm and BC = 14 cm. A semi-circular portion with BC as diameter is cut off. Find the area of a remaining part.

Answer

Sol.         We have,

Length of the rectangle ABCD = AB = 20 cm

Breadth of the rectangle ABCD = BC = 14 cm

∴     Area of rectangle ABCD = (20 × 14) cm2 = 280 cm2

Diameter of the semi-circle = BC = 14 cm

∴     Radius of the semi-circle = 7 cm

plane

Figure 

Area of the semi-circular portion cut off from the rectangle ABCD

=\frac{1}{2} (pir2) = \left( {\frac{1}{2} \times \frac{{22}}{7} \times {7^2}} \right) cm2 = 77 cm2

∴   Area of the remaining part = Area of rectangle ABCD – Area of semi-circle

= (280 – 77)cm2 = 203 cm2

Ex. 4.     Four equal circles are described about the four corners of a square so that each touches two of the others as shown in figure. Find the area of the shaded region, each side of the square measuring 14 cm.

Answer

Sol.         Let ABCD be the given square each side of which is 14 cm long. Clearly, the radius of each circle is 7 cm.

We have,

Area of the square of side 14 cm long = (14 × 14) cm2 = 196 cm2

Area of each quadrant of a circle of radius 7 cm

plane

Figure 

= \frac{1}{4} (pir2) = \left\{ {\frac{1}{4} \times \frac{{22}}{7} \times {{(7)}^2}} \right\} cm2 = 38.5 cm2

∴  Area of 4 quadrants = 4 × 38.5 cm2 = 154 cm2

Hence,  Area of the shaded region = Area of the square ABCD – Area of 4 quadrants

⇒     Area of the shaded region = (196 – 154) cm2 = 42 cm2

Ex. 5.     In an equilateral triangle of side 24 cm, a circle is inscribed touching its sides. Find the area of the remaining portion of the triangle (Take\sqrt 3 = 1.732).

Answer

Sol.         Let ABC be an equilateral triangle of side 24 cm, and let AD be perpendicular from A on BC. Since the triangle is equilateral, so bisects BC.

plane

Figure 

∴   BD= CD = 12 cm

The centre of the inscribed circle will coincide with the centroid of Δ ABC.

∴   OD = \frac{{AD}}{3}

In Δ ABD, we have

AB2 = AD2 + BD2                 [Using Phythagoras Theorem]

⇒   242 = AD2 + 122

⇒   AD = \sqrt {{{24}^2} - {{12}^2}} =\sqrt {\left( {24 - 12} \right)\left( {24 + 12} \right)}   =  \sqrt {36 \times 12} = 12 \sqrt 3 = cm

∴   OD = \frac{1}{3}AD =\left( {\frac{1}{3} \times 12\sqrt 3 } \right)  cm = 4\sqrt 3 cm

Area of the incircle = pi (OD)2 = \left\{ {\frac{{22}}{7} \times {{\left( {4\sqrt 3 } \right)}^2}} \right\}cm2 = \left\{ {\frac{{22}}{7} \times 48} \right\}cm2 = 150.85 cm2

Area of the triangle ABC = \frac{{\sqrt 3 }}{4} (Side)2 =\frac{{\sqrt 3 }}{4} (24)4 = 249.4 cm2

∴  Area of the remaining portion of the triangle = (249.4 – 150.85)cm2 = 98.55 cm2

Ex 6.      ABCP is a quadrant of a circle of radius 14 cm. With AC as diameter, a semi-circle is drawn. Find the area of the shaded portion.

Answer

Sol.

AC2 = AB2 + BC2

⇒   AC2 = 142 + 142

⇒   AC = \sqrt {2 \times {{14}^2}} = 14\sqrt 2 cm

⇒   \frac{{{\rm{AC}}}}{{\rm{2}}}= \frac{{14\sqrt 2 }}{2} cm = 7\sqrt 2

Now,

plane

Figure 

Required area  = Area APCQA

= Area ACQA – Area ACPA

= Area ACQA – (Area ABCPA – Area of ΔABC)

= (Area of semi-circle with AC as diameter)

– [Area of a quadrant of a circle with AB as radius – Area of ΔABC]

=  \left[ {\frac{1}{2}\left\{ {\frac{{22}}{7} \times {{\left( {7\sqrt 2 } \right)}^2}} \right\} - \left\{ {\frac{1}{4} \times \frac{{22}}{7} \times {{14}^2} - \frac{1}{2} \times 14 \times 14} \right\}} \right]

=\left\{ {\frac{1}{2} \times \frac{{22}}{7} \times 45 \times 2 - \frac{1}{4} \times \frac{{22}}{7} \times 14 \times 14 + \frac{1}{2} \times 14 \times 14} \right\} cm2 = 85.4 cm2

Ex7.       The area of an equilateral triangle is 493. Taking each angular point as centre ‘a’ circle is described with radius equal to half the length of the side of the triangle as shown in figure. Find the area of the triangle not included in the circle.

Answer

Sol.      Area of ΔABC = 49 \sqrt 3 cm2

⇒   \frac{{\sqrt 3 }}{4}a2 = 49\sqrt 3     [ bu Area =\frac{{\sqrt 3 }}{4} (Side)2]

⇒   a2 = 49 × 4

⇒   a = 14 cm

Thus,

Radius of each circle is 7 cm

Now,

plane

Figure 

Required area = Area of ΔABC –  3 × (Area of a sector of angle 60° in a circle of radius 7 cm)

⇒   Required area =\left\{ {49\sqrt 3 -3\left( {\frac{{60}}{{360}} \times \frac{{22}}{7} \times {7^2}} \right)} \right\}  cm2,

⇒   Required area = [/katex](49\sqrt 3 -77)[/katex]cm2

= (49 × 1.73 – 77) cm2 = 7.77 cm2.

Ex.8.      ABCD is a field in the shape of a trapezium AB || DC and ∠ABC = 90°, ∠DAB = 60°. Four sectors are formed with centres A, B, C and D (see figure). The radius of each sector is 17.5 m. Find the

(i)   Total area of the four sectors.

(ii)   Area of remaining portion given that AB = 75 m and CD = 50m.

Answer

Sol.         Since AB || CD and ∠ABC = 90°. Therefore∠BCD = 90°. Also,

∠BAD = 60°

∴   ∠CDA   = 180° – 60° = 120°

(i)    We have,

Total area of the four sectors = Area of sector at A + Area of sector at B + Area of sector at C + Area of sector at D.

\frac{{60}}{{360}} \times \pi  \times {(17.5)^2} + \frac{{90}}{{360}} \times \pi  \times {(17.5)^2} + \frac{{90}}{{360}} \times \pi  \times {(17.5)^2} + \frac{{120}}{{360}} \times \pi  \times {(17.5)^2}

=  \left\{ {\left( {\frac{1}{6} + \frac{1}{4} + \frac{1}{4} + \frac{1}{3}} \right) \times \pi  \times {{(17.5)}^2}} \right\} m2

=  \pi  \times {\left( {\frac{{35}}{2}} \right)^2}m2 =\frac{{22}}{7} \times \frac{{35}}{2} \times \frac{{35}}{2} m2

=  962.5 m2

plane

Figure 

(ii)   Let DL be perpendicular drawn from D on AB. Then,

AL = AB – BL = AB – CD = (75 – 50)m

= 25 m

In ΔALD, we have tan 60° = \frac{{{\rm{DL}}}}{{{\rm{AL}}}}

⇒    \sqrt {\rm{3}} =\frac{{{\rm{DL}}}}{{{\rm{25}}}}

⇒    DL =  {\rm{25}}\sqrt {\rm{3}} m

∴  Area of trapezium ABCD =  \frac{{\rm{1}}}{{\rm{2}}} (AB + CD) × DL

=  \frac{{\rm{1}}}{{\rm{2}}} (75 + 50) × {\rm{25}}\sqrt {\rm{3}} m2

=  1562.5 × 1.732 m2

=  2706.25 m2

Hence,

Area of the remaining portion = Area of trapezium ABCD – Area of 4 sector

= 2706.25 m2 – 962.5 m2

= 1743.75 m2.

Ex.9.      Find the area of the shaded region in figure , where a circular arc of radius 6 cm has been drawn with vertex O  of an equilateral triangle OAB of side 12 cm centre.

Answer

Sol.         Area of a circle with centre O and radius (6 cm)

= pir2 = \frac{{{\rm{22}}}}{{\rm{7}}} × 6 × 6 = \frac{{{\rm{792}}}}{{\rm{7}}} cm2

Area of triangle OAB = \frac{{\sqrt {\rm{3}} }}{{\rm{4}}} a2 =\frac{{\sqrt {\rm{3}} }}{{\rm{4}}}  × 12 × 12 cm2

= \sqrt {\rm{3}} × 3 × 12 = 36 \sqrt {\rm{3}} cm2

Area of sector OCD with angle

= \frac{{\pi  \times {{\rm{r}}^{\rm{2}}}\theta }}{{360^\circ }} = \frac{{{\rm{22}}}}{{\rm{7}}} ×\frac{{6 \times 6 \times 60^\circ }}{{360^\circ }}  =  \frac{{132}}{7}cm2

∴   Required area (shaded portion)

plane

Figure

=  Area of a circle + Area of ΔOAD – Area of sector OCD

= \left[ {\frac{{792}}{7} + \frac{{36\sqrt 6 }}{1} - \frac{{132}}{7}} \right] cm2 = \left[ {\frac{{660}}{7} + 36\sqrt 3 } \right] cm2

Ex. 10.   In a circular table cover of radius 32 cm, a design is formed leaving an equilateral triangle ABC in the middle as shown in figure . Find the area of the design (shaded region).   

Answer

plane  

Figure 

Sol.    ΔABC is an equilateral Δ

Let AD ⊥ BC. M is the point of intersecton of three medians.

∴    AM : MD = 2 : 1

32 : MD  = 2 : 1       [bu Radius = 32 cm]

⇒   MD =  \frac{{32 \times 1}}{2}= 16 cm

∴      BM = AM = Radius = 32 cm

In right angled ΔMDB, BD2 = BM2 – DM2 = (32)2 – (16)2

BD2   = (32 + 16) (32 – 16) = 48 × 16

plane

Figure 

∴ BD = \sqrt {16 \times 3 \times 16} =  16\sqrt 3 cm

⇒   BC = 2BD = 2 × 16\sqrt 3 cm = 32\sqrt 3 cm.

∴  Area of e  qualateral ΔABC =\frac{{\rm{1}}}{{\rm{2}}}  × BC × AD

=  \frac{1}{2} \times 32\sqrt 3  \times 48  cm2

=  32 \times 24\sqrt 3 cm2                                                

Also area of the circle with radius

32 cm = pir2

=  \frac{{{\rm{22}}}}{{\rm{7}}}× 32 × 32 cm2

Hence, required area (shaded portion with design)

= Area of circle – area of ΔABC

=  \left[ {\frac{{22}}{7} \times 1024-32 \times 24\sqrt 3 } \right]cm2.

=  \left( {\frac{{22528}}{7}-768\sqrt 3 } \right)cm2.

Ex.11.    Calculate the area of the designed region in figure (i) common between the two quadrants of circles of radius 8 cm each.

Answer

area of combination of plane figures

                                                             

Figure  (i)                           Figure  (ii)

Sol.         Area of the quadrant ABPD

=  \frac{{\pi {r^2}\theta }}{{360^\circ }} = \frac{{22}}{7} \times \frac{{{\rm{A}}{{\rm{B}}^2} \times 90^\circ }}{{360^\circ }}cm2

=  \frac{{22}}{7} \times \frac{{8 \times 8 \times 1}}{4}  = \frac{{352}}{7}cm2

Area of the triangle ABD = \frac{{\rm{1}}}{{\rm{2}}} (AB × AD)

=  \frac{{\rm{1}}}{{\rm{2}}} × 8 × 8 = 32 cm2

⇒   Area of the segment BPD =  Area of quadrant – Area of ΔABD

=  \left[ {\frac{{352}}{7}-32} \right]cm2 = \left[ {\frac{{352-224}}{7}} \right] cm2 =  \frac{{128}}{7}cm2.

Hence, area of the design BPDQB = 2 × Area of segment BPD

= 2 × \frac{{128}}{7} cm2 = \frac{{256}}{7} cm2.

 

ALSO READ

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top
Scroll to Top